“Oggi l’AI è poco efficiente e costosa per l’ambiente. È necessario cambiare paradigma” sottolinea Vincenzo Lomonaco, tra i massimi esperti italiani di Continual Learning, ricercatore presso il Dipartimento di Informatica dell’Università di Pisa.
Creare dei microprocessori in grado di replicare i sistemi di apprendimento biologico, così da rendere l’Intelligenza Artificiale più flessibile, efficiente e sostenibile anche dal punto di vista ambientale. È questa la sfida lanciata da un gruppo internazionale di ricercatori - coordinato dal Neuromorphic AI Lab (NUAI Lab) della UTSA (University of Texas at San Antonio) - di cui fa parte anche Vincenzo Lomonaco (qui sotto nella foto), tra i massimi esperti italiani di Continual Learning, ricercatore presso il Dipartimento di Informatica dell’Università di Pisa e tra gli autori dell’articolo “Design principles for lifelong learning AI accelerators”, da poco uscito sulla prestigiosa rivista scientifica Nature Electronics.
“La fallibilità dell’Intelligenza Artificiale è ancora troppo alta e questo perché l’AI, così come la conosciamo oggi, si basa su sistemi di apprendimento automatico troppo rigidi, che la rendono incapace di affrontare condizioni nuove, non precedentemente incontrate durante il processo di addestramento – spiega Vincenzo Lomonaco – Di fatto, le facciamo apprendere una grande quantità di informazioni tutte insieme, ma ogni volta che emerge una novità su un determinato tema dobbiamo aggiornare il sistema da zero. Tutto ciò, oltre ad essere poco efficiente, ha anche dei costi altissimi, sia in termini economici che ambientali, visto l’elevato consumo di energia e le conseguenti emissioni di CO2 di questi processi”.
Aggiornare un sistema di AI, d’altronde, può arrivare a costare fino a diversi milioni euro. Mentre per avere un’idea dell’impronta ambientale dell’AI basti pensare che, secondo un recente studio dell’Università del Massachusetts, l’addestramento di diversi modelli di intelligenza artificiale di grandi dimensioni può emettere una quantità di anidride carbonica equivalente a cinque volte quella emessa da un’auto americana media durante il suo ciclo di vita, compreso il processo di produzione. Una soluzione a tutto ciò, secondo Lomonaco e gli altri ricercatori del Neuromorphic AI Lab - coordinato dalla professoressa Dhireesha Kudithipudi -, è rappresentata dall’Apprendimento Automatico Continuo (noto anche come Continual Learning o Lifelong Learning), che permetterebbe all’AI di assimilare un gran numero di conoscenze in sequenza, senza dimenticare quelle acquisite in precedenza.
Vincenzo Lomonaco assieme ai colleghi del Dipartimento di Informatica dell’Università di Pisa, Antonio Carta e Andrea Cossu, con cui collabora attivamente sui temi dell'articolo pubblicato Nature Electronics
“Per realizzare un sistema di apprendimento di questo genere è necessario modificare gli attuali paradigmi computazionali ed eliminare i vincoli infrastrutturali esistenti – prosegue Lomonaco – Per questo, con i colleghi del NUAI Lab di San Antonio, abbiamo gettato le basi di un nuovo sistema di apprendimento incrementale, basato sul co-design hardware-software. Ossia sulla progettazione simultanea di componenti hardware e software, così da dar vita ad un sistema di lifelong learning per l’AI che sia robusto e autonomo. Il tutto basato su algoritmi di nuova generazione che, lavorando in modo più simile all’intelligenza umana, permettono all’Intelligenza Artificiale di accrescere le proprie conoscenze in modo progressivo, più rapido ed efficiente, con consumi che si avvicinano a quelli di una lampadina”.
Santini avrà la responsabilità di guidare e consolidare la forza commerciale in due mercati chiave per expert.ai quali Italia e Spagna, con un focus strategico e mirato a ottimizzare la capitalizzazione delle opportunità di business già esistenti, accelerando la crescita delle vendite e identificando nuove aree di espansione nei segmenti di mercato più promettenti.
02-04-2025
L’idrogeno liquido è uno dei candidati a sostituire il cherosene nei futuri aerei a zero emissioni. Un gruppo di ricerca svilupperà un innovativo serbatoio in grado di contenerlo in sicurezza.
02-04-2025
Il gruppo di ricerca congiunto di Politecnico di Milano e INRiM, insieme a INGV e Open Fiber, ha depositato una domanda di brevetto inerente al metodo Foresight che consente di rilevare i danni di un terremoto grazie alla fibra ottica.
02-04-2025
“I nostri piani prevedono in 24 mesi progetti per oltre 150 milioni di euro, prima nel Centro-Nord e poi nel Sud Italia”, spiega il CEO Emmanuel Becker
01-04-2025
Il gruppo di ricerca congiunto di Politecnico di Milano e INRiM, insieme a INGV e Open Fiber, ha depositato una domanda di brevetto inerente al metodo Foresight che consente di rilevare i danni di un terremoto grazie alla fibra ottica.
Dotato di intelligenza artificiale e tecnologia innovativa, ADRIANO accoglie cittadini e turisti fornendo informazioni, in italiano e inglese, sulla storia di Roma e sul sito storico della Camera di commercio di Roma.
L’idrogeno liquido è uno dei candidati a sostituire il cherosene nei futuri aerei a zero emissioni. Un gruppo di ricerca svilupperà un innovativo serbatoio in grado di contenerlo in sicurezza.
La creazione di questo modello di AI utilizzerà un vasto set di dati sulle formulazioni e sui componenti per accelerare l'esecuzione di molteplici attività da parte di L'Oréal, tra cui la formulazione di nuovi prodotti, la riformulazione di cosmetici esistenti e l'ottimizzazione per la produzione su larga scala.